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On the Gross-Koblitz Formula

PAUL THOMAS YOUNG

We use the methods of J. Stienstra to construct logarithms
for the formal Picard groups of the Fermat curves. These are formal groups
of dimension equal to the arithmetic genus g of the curve and the expansion
coefficients of the logarithm are a sequence of g by g matrices. One may
choose a subsequence consisting of diagonal matrices which yield rapidly
converging p-adic limit formulae for Jacobi sums. These limit formulae
imply the Gross-Koblitz formula for Gauss sums.

1. Introduction

In the study of algebraic varieties and character sums over finite fields, a
natural problem is that of finding p-adic formulae, for roots of the associated
zeta or L-functions or for the sums themselves. A celebrated result in this area
is the elegant formula of Gross and Koblitz [3] expressing Gauss sums in terms
of the p-adic gamma function at rational arguments, for which several proofs
have been given, including those in [1], [2], [4], and [8]. In this article we give a
proof of this theorem by using the methods of Stienstra ([5], [6]) to analyze the
formal Picard groups attached to the Fermat curves.

By [7, Theorem 3.5; 2.10] one knows how to obtain limit formulae for the
p-adic unit roots of L-functions from the congruences given in [6] in the case
where det 3, is a p-adic unit. We show in §3 that this approach may also be used
to determine the roots of g-ordinal less than 1 for the Fermat curves over F,,
although the condition on det 3, is not satisfied. Whereas in [4] a p-adic limit
formula for Jacobi sums is obtained from the expansion coefficients of differential
forms on these curves, our method essentially uses the expansion coefficients of
the right-invariant differential on the formal Picard group of the curve. The
result is a very natural expression of Jacobi sums as rapidly converging limits of
ratios of multinomial coefficients (cf. (3.10)).
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2. Gauss Sums and Jacobi Sums

Throughout this paper p will denote an odd prime, F, the finite field of ¢ = pf
elements, Z, the ring of p-adic integers, Q, the field of p-adic numbers, K the
unramified extension of Q, of degree f, and O the ring of integers of K. We
fix a p-th root of unity ¢ = ¢, and let 7 be the unique element of K (¢,) such
that 77~! = —p and { = 1 + 7 (mod 7?%).

Let ¢ : Fy — Qp(C) be the additive character on F, defined by ¢(t) = ¢TI
where Tr : F;, = F, is the trace map. The Teichmiiller character w; : Fy —
K is the unique multiplicative character on F, such that, for all ¢ € F,, the
reduction of wy(t) mod p is t. (We extend all multiplicative characters x using
the convention x(0) = 0). For z € Ok the Teichmiiller representative & of z is
the unique element of Ok satisfying 2¢ = Z and & = z (mod pOk).

For any multiplicative character x of Fy, the Gauss sum gy (x) over F, asso-
ciated to the characters ¢ and x is defined by

(2.1) g(x) = = Y b()x(t).
teF,
Let a be an integer, 0 < a < ¢—1, and put &« = a/(¢ — 1). The Gross-Koblitz
formula [3] states that

(2:2) gu(wy®) = 7@ H Ty (),

where S(a) denotes the sum of the digits in the base p expansion of a, I', denotes
Morita’s p-adic gamma function, and for elements @« € QN Zy, a(?) denotes the
i-th iterate of Dwork’s shift map, which defines o’ to be the unique element
of Q NZ, satisfying po’ —a = po € {0,1,2,...,p— 1}, with a® = o, and
o) = (ali=1) for i > 0. Recall that T, is defined for positive integers n by

(2.3) rp(n)=(=1* IT 4

0<i<n

pki
extends to a continuous, unit-valued function on Z, which is Lipschitz with
constant 1, and satisfies the functional equations

—zly(z), = €Ly,
(2.4) Lyl +1) = {

—Tp(z), @ €pZy;
(2.5) Lp(@)lp(l—2) = —(=1)", z€Z,.

If s > 0 and xo, ..., Xs : F4 = K are multiplicative characters, the Jacobi sum
J(x0, .-, Xs) is defined by

(2.6) T(x0,-Xs)=— > Xolto) - Xa(ts).

tot o +ts=1
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One has the well-known relation

o - _ D gy(xo) o ge(xs)
27) o) =g gu(x0 - Xs)

between the Gauss and Jacobi sums (cf. [10]), where

(2.8) o { 1, 1f xo - xs 1s nontrivial,

q, 1f xo---xs 1s trivial but each y; 1s nontrivial.

3. The Fermat Curves

We will analyze the Fermat curves of degree d with projective equation a7 +
arT¢ 4+ asT¢ = 0 and their reductions to characteristic p, where (d,p) = 1.
Specifically, we choose ¢ = pf so that ¢ — 1 = ed for some integer ¢, and then
take our parameters a; to lie in the ring R = Z[(;—1], where {41 is a primitive
(¢ — 1)-st root of unity.

Following [10] and [5], we define the sets

(3.1)  J = {(do,i1,i2) € Z®: 0 < g, 41,49 < d and iy + i1 + iy = 0 (mod d)},

(3.2) Ji = {(io,41,12) € Z : 0 < ig,i1,is < d and ig + i1 + iy = d}.

For j = (jo,Jj1,j2) € J set j = (jo,71,J2) = (d = jo,d — j1,d — ja). Tt is easily
seen that J may be written as a disjoint union J; U J where Jo = {7:j € J1}.
For j € J we define the integer e; = ((S(¢cjo) + S(cji) + S(ejz))/(p — 1)) — f,
which is the number of carries in the base p addition cjy + ¢ji + ¢j2. Then for
j € J we define

I=1r e T (s LGN (a1 ()
(3.3) B(j) = (=p)* HFP((JO/d) )Fp(r(;(ll/(ff))) )Ty ((G2/d) V)

PROPOSITION. For j € J we have B(j)B(7) = q.

ProoF. We first compute

2 . 7
Ek:o S(;jj)l—i— S(C]k) —2f=3f—-2f =1,

since S(cjr)+5S(cgr) = S(g—1) = f(p—1) for each k. Therefore (—p)® (—p)® =
(=1)7q, so

(3.4) ej+er=

f-1 2

BB = (-0 [T TG/ DOV (/)
3.5 )
(3.5) :(_1) g (-1 )Z Zk oﬂjk/d

(%) 2 .
( )Zk OZZ 0 '“yk/dp =q- (_1)Zk:0 Clk — q,

since EZ:O cjk = q— 1 or 2(q — 1) according to whether j € J; or j € Js.
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For a projective curve X in P? defined by a single equation F = 0, where
F € R[Ty, Ty, Ts] is a homogeneous form of degree d > 2, the method of Stienstra
[5] produces a logarithm

(3.6) Ury = m B

for the formal Picard group H'(X, (A}myx) associated to X. This is a formal
group of dimension equal to the arithmetic genus g = (d — 1)(d — 2)/2 of X, and
so the logarithm ¢ = (41, ..., ¢;) is a g-tuple of formal power series ¢; € R[[r]] in
the g-tuple 7 = (7, ..., 74) of variables, 7 denotes (77", ..., 7;"), and each By, is
a ¢ x g matrix, whose rows and columns are indexed by the set [J; described
above. For ¢,j € J1 the entry B, ; ; of the matrix 3,, is given by

(3.7) Bm,i; = the coefficient of Tg”j”_iOT{”jl_“Tsz_“ in Fm—L,

Furthermore, we know from Stienstra’s work in [6] that if P(T) = 1+b/T+byT?+
4 b29T29 is the numerator of the zeta-function (over F,) of the reduction of
X modulo p then there are congruences

(3.8) Bmgr + b1fmgr-1 + - -+ bagfmgr—20 =0 (mod pg" "I Myy4(R))

of Atkin-Swinnerton-Dyer type for all m € Z; and r > g. It follows that if
lim, o0 ﬁqrﬂq_,l_l = H exists in Myyy(Ok) and lim, o (fr + ordﬂq_rl) = 40
then P(H™1) = 0 and therefore each eigenvalue of H is a reciprocal root of
P(T). In general this p-adic limit need not exist (cf. [11, §4]). We now show
that it does exist in the case of the Fermat curves of degree d when d divides
q—1.

THEOREM. For the Fermat curve aoTéi + alTld + agTzd =0 withqg—1=cd,
¢ € Z, the limit lim,_ ﬂqrﬂq_rl_l = H of matrices as constructed above exists
and is a diagonal matriz in ngg(OK) Furthermore, for each j € J1, the (j,7)-
entry of H 1s given by aCJDAc]“C”B( i), and for all j € J this expression gives
a reciprocal root of the zeta function of this curve over Fy.

Proor. If d divides n — 1 then £, ;; = 0 unless 1 = j, in which case we have

R n—1 (n=1)jk/d
(3.9) Bn.ji = <(n = 1)jo/d,(n—=1)j1/d, (n — ]?/d) H

We apply the calculation in Theorem 2.2 of [11] to the entries of the diagonal
matrices ﬂqrﬂq_,l_l; for each j € Ji we compute the (j, j)-entry by taking ay =
Ji—1/d for k = 1,23, a = 1, and ¢ = 0 in the notation of that theorem. From
[11, eq. 2.14] and the congruence x? = & (mod pg"Ok) for x € Ok, we find
that the (j, j)-entry of Gy [7’ .—. satisfies the congruence

(3.10) (Bgr ) () = agjﬂaijlaghB(j) (mod p'**¢" 1 Ok).
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We see that 0 < e; < f for all j € J; since t = 0, and we find by induction
that ord,3y- ;; = rej. We conclude that the matrix limit lim,_; o ﬂqrﬂq_rl_l =H
exists and is a diagonal matrix, and in fact for each j € J; the scalar limit
lim, s 0 (Byr 81 DG = ?16]” G AC”B( j) is the corresponding diagonal entry of
H. Since hmr_>Oo (‘fr%—ord[)’qr ) = 400, each such limit is an eigenvalue of H and
a reciprocal root of P(T). Knowing further that v — ¢/v permutes the reciprocal
chu ACJ1 chzB( )

roots and using the above proposition, we see that in fact a is a

reciprocal root of P(T) for each j € J, completing the proof.

Remark. This construction of the matrix H actually describes the action of
Frobenius F,; on the subspace of crystalline cohomology where it acts with slopes
less than 1. The calculation in [5] is done via the isomorphism H'(X, G, x) =
H?(P%(R), Gm,ﬁ): relative to the choice {FT~7},¢ 7, of Cech cocycles to repre-
sent a basis of H?(P?(R), Gm,ﬁ’) (cf. [5, eq. (4.6.1)]). Here X is the projective
variety defined by F' = aoTg + a1 T + as T4, F denotes the corresponding ideal
sheaf on P%(R), and T~/ denotes TO_jDTl_leQ_j2. Via this isomorphism this
basis gives a coordinatization for the formal Picard group H'(X, (AS‘rmVX) and
in turn a basis for the Witt-vector cohomology H!(X, WO x) relative to which
the diagonal matrix H® is the matrix of Frobenius Fy, (cf. [7, §§2.10,2.6,3.5]).
After tensoring with Q this cohomology is isomorphic to the slope < 1 part
of HL, (X) (cf. [6, §0.3], [7, §1]) and the image of the basis {FT~7} under
this isomorphism is the set of eigenvectors of Frobenius corresponding to the
eigenvalues agju ({Jl AC”B( j) for j € Jh.

As a corollary we have the following p-adic formula for Jacobi sums.

COROLLARY. Let s > 0 and let ag,...,as; € Z,(\Q[0,1) satisfy a, =
Ji/(q — 1) with each jp € Z, and set @ = ag+ -+ as. Write a = t + v
witht € Z and vy = ¢/(q —1) € (0,1]. Suppose that o > 0, and if o € Z suppose
that each ay, > 0. Then

-1
(3.11) (1) T I, w7y = (-p) ]
i=0

where e = (S(jo) + -+ S(js) — S(e))/(p = 1).

Proo¥. We consider first the case where s = 2 and a € 7Z, so that the
ordered triple j = (jo,j1,J2) lies in the set J corresponding to the Fermat
curve agT¢ + ayT¢ + axTd = 0 for d = g — 1. From the work of Weil ([10, eq.
8]) one knows that for all j € 7, —déuéjll EL]?2J( go, fjl w;h) is a reciprocal

root of the zeta function of this curve. Indeed the group pa X pg acts on this
curve by (Co,¢1) @ (To, 71, T2) = (CoTo,¢iT1,T3), and H!. (X) decomposes

cris
—Jo

into a direct sum of the 2¢ one-dimensional ( ,w;J )-isotypical subspaces

corresponding to the pairs of characters {( do ;jl)}jej of ug. For j € J
the Jacobi sum o(j) = —J( ;jl,w; 2) is characterized by the property

that a AJ” ]1 J;J(j) is the elgenvalue of Frobenius on the (w;j‘j,w;jl)—isotypical
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subspace for all (ag, a1,as) € P?(R) (cf. [4, Corollary 2.4; §6.3]). The above
remark implies that the part of this decomposition corresponding to ordgo(j) < 1
(i.e., to j € J1) is identical to the decomposition into eigenspaces corresponding
to the eigenvalues dgj‘)&ijl&;hB(j). So for j € Ji, B(j) is characterized by
the property that &é” d{ld?B(j) is the eigenvalue of Frobenius on an isotypical
subspace of cohomology of the curve aoTéi—i—alTld—}—aszd = 0 for all (ag, a1, as2) €
P2(R). Since this property also characterizes o(j), we have B(j) = o(j) for
J € Jh. Since B(j)B(7) = ¢ = o(j)o(7), this holds for all j € J. As the right
member of the equality (3.11) is precisely B(j), we have proved (3.11) for s = 2,
a€Z.

We generalize the definition of B(j) by denoting the right member of equation
(3.11) by B((jo,-..,Js)). Considering the case s = 1, if aga; = 0 the theorem
reduces to 1 = 1, and if ag + a3 = 1 it reduces to (—1)770 = H{:_(Jl(—l)“%
by the reflection formula (2.5); this equality holds because jo = Z{:_ol ,u(ofgpi.
Thus we may assume none of ag, a1, a lie in Z. In this case there is a unique
J2 such that j = (jo,Jj1,J2) € J, and from (2.7) we know J(w;j‘j,w;jl) =
—w}h(—I)J(w;j”,w;jl,w;h). Since in this case we also have B((jo,Jj1)) =
(=1)2B((jo, j1,J2)), the result for s = 1 follows from the s = 2, a € Z case.

The corollary may then be obtained by induction on s. Specifically, assuming
the above conditions on {ag, ..., a5} and on {ag, ..., @541}, one uses (2.5), (2.7)
to check that

(—1)5+2J(w;]°, w7

3.12 _ f _ —C-J w—(ju+"'+js)’w—js+1
( ) (_1)5+1J(w;‘]0’ ...,w;“) ( f f )
and

B((jo, ..., Js )
(3.13) Bllio, . dost)) C-B((J Js+1));

B((]O::js))
where 7 € {0,1,...,¢— 2} satisfies j) = jo+ - -+ js (mod ¢ — 1), and
_{q, if jo+---+7js €(¢— 1Z,

1, otherwise.

(3.14)

Remark. In view of this corollary, we may view the a; = 1 case of congruence
(3.10) as a special case of the more general result

(anrnent)
9 1x nO,T‘:"':ns,ﬁt s —Jjo —Js e r—
(3.15) (=1) +1J( J ,...,wfj) (mod p1+ q 1Z][,)

= w
( Np—1 +1 ) I
nO,T—17 AR ns,f‘—11t

[11, Theorem 2.2], where for r > 0 we set n;» = (¢" — Da;, n, = (¢" — 1)a,
and all other notation as in the corollary. If one applies Stienstra’s construction
to the diagonal hypersurface T + - 4+ T = 0, one essentially recovers these
congruences in the cases where ¢ =0 and a € Z.
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4. The Gross-Koblitz Formula
THEOREM. (Gross-Koblitz). Let a be an integer, 0 < a < q — 1, and put
a=ua/(q—1). Then

-1
gy(w;®) =75 T[Ty (a),

7=0
where 7P~1 = —p and ( = 1 + 7 (mod 720k).

ProoOF. Write poo = t + v with ¢t € Z and v = ¢/(¢ — 1) € (0,1]. Then
using the above Corollary and the well-known fact that gy (x) = gy (x?) for any
multiplicative character x [9, Lemma 6.5], we compute

—a)P—l gw(w;G)P

gy (w = —a = —Jwpt ., wr )
d gw(wjp ) ;/4/
(41) p copies
-1
= (=p)° [] T (@) /T, (+19),
i=0

where e = (pS(a) — S(¢))/(p —1). Since pa —y =1t € {0,1,...,p— 1}, we have
, :

v = a and thus ¥ = a0~ for i > 0, so v = 4} = alf=1). Therefore
S(e) = S(a), so e = S(a), whence

f-1
(4.2) gy (Wit = (=p)* @ ] Tp(aD)p.
i=0
Therefore
f-1
(4.3) g0(w7®) = 75@ T Tp(a®),
i=0

where 7, is some (p — 1)st root of —p. Tt remains to show that for each a, (4.3)
holds with 7, = =.

We proceed by induction on a. For a = 0, (4.3) reduces to 1 = wj), which is
satisfied by mq = 7. For a = 1, we have a = 1/(q — 1) and () = p/~7/(q = 1)
for 1 < ¢ < f, so that H{:_ol Fp(a(i)) = 1 (mod pZ,); therefore gw(wfl) =m
(mod (7?)). But from the proof of [9, Lemma 6.12] we have gy, (w;l) =(—-1
(mod (7%)), so ¢ = 1+ m (mod (7?)); thus m = .

Now suppose that (4.3) holds with 7, = 7 for 0 < a < k < ¢ — 1. Then

—(k+1))

since gy (W} =gy (w}l)gw (w;k)/J(wfl,w;k), equating the corresponding

expressions from (3.11) and (4.3) for the members of this equality yields
S(k S(k —e
(4.4) 7rk_(}_1+1) = 7r17rk( )(—p) ,

where e = (S(k) +1—S(k+1))/(p —1). Since the right side of (4.4) is #5*+1),

we may take mp41 = 7, completing the induction.
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